JOURNAL OF APPROXIMATION THEORY 22, 350-351 (1978)

On Simultaneous Chebyshev Approximation

C. K. Chui*, Q. I. Rahman,⁺ B. N. Sahney,[‡] and P. W. Smith*

*Texas A & M University, College Station, Texas 77843, [†]Université de Montréal, Quebec, Canada, and [‡]University of Calgary, Alberta, Canada

Communicated by Oved Shisha

Received January 24, 1975

Diaz and McLaughlin [1] have recently proved the following

THEOREM A. For a and b real numbers (a < b), let F and f denote realvalued functions defined on the interval [a, b]. Let S denote a nonempty set of real-valued functions defined on [a, b]. Then

$$\inf_{s \in S} \| | \frac{1}{2}(F+f) - s \| + \frac{1}{2} \| F - f \| \| = \inf_{s \in S} \max\{ \| F - s \|, \| f - s \|\}, \quad (1)$$

where

$$||g|| = \sup_{a \leq x \leq b} |g(x)|.$$

They ask (cf. [1, Sect. 5]) if such a result is also valid for complex-valued functions and observe that if it is, the method of proof cannot be identical to that in the real case since the crucial lemma

 $|\frac{1}{2}(m+n)| + |\frac{1}{2}(m-n)| = \max(|m|, |n|)$ (m, n real numbers)

does not carry over to complex numbers. The answer to their question is "no" in as much as (1) does not hold for complex-valued functions in general. To see this let us take for F, f the constant functions

$$F(x) = -1, \quad f(x) = +1 \quad (a \leq x \leq b).$$

If S is the singleton set consisting of the constant function s = 1 + i, then the left-hand side of (1) is equal to $2^{1/2} + 1$ whereas the right-hand side is equal to $5^{1/2}$.

However, for complex-valued functions, the following analogous result can be obtained in a straightforward manner.

THEOREM 1. Let F, f, and s be complex-valued functions on [a, b]. Then

$$\max(||F - s||, ||f - s||) = \left\| \left\{ \left(\left| \frac{F + f}{2} - s \right| + \frac{|F - f|}{2} \right)^2 + \frac{||F - s|^2 - |f - s|^2|}{2} - \frac{|(F - s)^2 - (f - s)^2|}{2} \right\}^{1/2} \right\|.$$
(2)

Hence, (2) implies (1) if F, f, and s are real valued.

Let A be a bounded subset of B[a, b], the Banach space of bounded realvalued functions defined on [a, b] with the supremum norm. We have the following

THEOREM 2. For any $s \in B[a, b]$,

$$\| |((F+f)/2) - s| + \frac{1}{2} |F - f| \| = \sup\{ \|a - s\| : a \in A\},$$
(3)

where $F(t) = \sup\{a(t): a \in A\}$ and $f(t) = \inf\{a(t): a \in A\}$.

Hence, Theorem A might have wide applicability, for instance, in computing Chebyshev centers.

ACKNOWLEDGMENT

We wish to acknowledge the late C. H. Ching for his interest in this problem.

REFERENCE

1. J. B. DIAZ AND H. W. MCLAUGHLIN, On simultaneous Chebyshev approximation and Chebyshev approximation with an additive weight, J. Approximation Theory 6 (1972), 68-71.