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Diaz and McLaughlin [I] have recently proved the following

THEOREM A. For a and b real numbers (a < b), let F and f denote real
valued functions defined on the interval [a, b]. Let S denote a nonempty set of
real-valued functions defined on [a, b]. Then

~~flll t(F + f) - s 1+ t IF -fl II = ~~fmax{11 F - s II, Ilf - s Ii}, (1)

where

II g II = sup Ig(x)l·
a~x~b

They ask (cf. [1, Sect. 5]) if such a result is also valid for complex-valued
functions and observe that if it is, the method of proof cannot be identical
to that in the real case since the crucial lemma

I t(m + n)/ + I t(m - n)1 = max(1 m I, I n I) (m, n real numbers)

does not carryover to complex numbers. The answer to their question is "no"
in as much as (1) does not hold for complex-valued functions in general.
To see this let us take for F,fthe constant functions

F(x) = -1, f(x) = +1 (a ,s;; x ,s;; b).

If S is the singleton set consisting of the constant function s = 1 + i, then
the left-hand side of (1) is equal to 21/ 2 + 1 whereas the right-hand side is
equal to 51/2•

However, for complex-valued functions, the following analogous result
can be obtained in a straightforward manner.
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THEOREM 1. Let F, f, and s be complex-valued functions on [a, b]. Then

max(IIF- sll, III- siD = 111(1 Fi f - s1+ IF~ IIr
II F - s 12 - II - s 12 1

+ 2

_ [(F - S)2 -; (f - S)2[ r!211. (2)

Hence, (2) implies (1) if F, f, and s are real valued.
Let A be a bounded subset of B[a, b), the Banach space of bounded real

valued functions defined on [a, b) with the supremum norm. We have the
following

THEOREM 2. For any s E B[a, b),

II I«F + f)/2) - s I + ! IF - I Iii = sup{11 a - s II: a E A}, (3)

where F(t) = sup{a(t): a E A} andf(t) = infraCt): a E A}.

Hence, Theorem A might have wide applicability, for instance, in com
puting Chebyshev centers.
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